a) $V_{S.ABCD} = \dfrac{1}{3}S_{ABCD}.SA$
$S_{ABCD} = \dfrac{1}{2}AC.BD$
$ΔABC$ đều ⇒ $AB = AC = BC = a; \, BD = 2BO = a\sqrt{3}$ (Với $O$ là giao điểm 2 đường chéo $AC, BD$)
⇒ $S_{ABCD} = \dfrac{1}{2}a.a\sqrt{3}$
⇒ $V_{S.ABCD} = \dfrac{1}{3}\dfrac{1}{2}a.a\sqrt{3}.2a = \dfrac{a^{3}\sqrt{3}}{3} \, (đvtt)$
b) Kẻ $MI\perp AB \, (I \in AB)$
⇒ $MI//SA$
mà $SA\perp (ABCD)$
nên $MI\perp (ABCD)$
⇒ $V_{M.ABCD} = \dfrac{1}{3}S_{ABCD}.MI = \dfrac{1}{3}\dfrac{1}{2}a.a\sqrt{3}.a = \dfrac{a^{3}\sqrt{3}}{6} \, (đvtt)$
c) Ta có: $CI\perp AB$
⇒ $NA\perp AB$
mà $NA \perp SA \, (SA\perp (ABCD))$
⇒ $NA\perp (SAB)$
Kẻ $MK\perp SA \, (K \in SA)$
⇒ $NA\perp MK$
⇒ $MK\perp (SAN)$
⇒ $V_{M.NSA} = \dfrac{1}{3}S_{SAN}.MK = \dfrac{1}{3}.\dfrac{1}{2}.SA.AN.MK = \dfrac{1}{6}.2a.\dfrac{a\sqrt{3}}{2}.\dfrac{a}{2} = \dfrac{a^{3}\sqrt{3}}{12} \, (đvtt)$
e) Ta có $MI\perp (ABCD)$ (câu b)
⇒ $MI\perp (ADN)$
⇒ $V_{M.NDA} = \dfrac{1}{3}S_{DAN}.MI = \dfrac{1}{3}.\dfrac{1}{2}.AN.DN.MI = \dfrac{1}{6}.\dfrac{a\sqrt{3}}{2}.\dfrac{a}{2}.a = \dfrac{a^{3}\sqrt{3}}{24} \, (đvtt)$