Cho hình chóp tứ giác đều \(S.ABCD\). Mặt phẳng \(\left( P \right)\) chứa đường thẳng \(AC\) và vuông góc với mặt phẳng \(\left( {SCD} \right)\), cắt đường thẳng \(SD\) tại \(E\). Gọi \(V\) và \({V_1}\) lần lượt là thể tích khối chóp \(S.ABCD\) và \(D.ACE\), biết \(V = 5{V_1}\). Tính côsin của góc tạo bởi mặt bên và mặt đáy của hình chóp \(S.ABCD\).
A.\(\dfrac{1}{2}\)
B.\(\dfrac{{\sqrt 3 }}{2}\)
C.\(\dfrac{1}{{2\sqrt 2 }}\)
D.\(\sqrt {\dfrac{2}{3}} \)