Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\). Các đường chéo của các hình chữ nhật \(ABCD,\,\,ABB'A',\,\,\,ADD'A'\) lần lượt là \(\sqrt 5 ,\,\,\sqrt {10} ,\,\,\sqrt {13} \). Thể tích của khối hộp chữ nhật đã cho là: A.\(6\) B.\(8\) C.\(5\) D.\(36\)
Đáp án đúng: A Giải chi tiết: Gọi độ dài các cạnh \(AB = a,\,\,AD = b,\,\,AA' = c\,\,\,\left( {a,b,c > 0} \right)\) Theo giả thiết, các đường chéo của các hình chữ nhật \(ABCD\), \(ABB'A'\), \(ADD'A'\) lần lượt là \(\sqrt 5 ,\,\,\sqrt {10} ,\,\,\sqrt {13} \) nên \(AC = \sqrt 5 \), \(AB' = \sqrt {10} \), \(AD' = \sqrt {13} \). Do \(ABCD.A'B'C'D'\) là hình hộp chữ nhật nên ta có : \(\left\{ \begin{array}{l}A{C^2} = A{B^2} + A{D^2}\\AB' = AA{'^2} + A{B^2}\\AD' = AA{'^2} + A{D^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{a^2} + {b^2} = 5\\{a^2} + {c^2} = 10\\{b^2} + {c^2} = 13\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 1\\{b^2} = 4\\{c^2} = 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 2\\c = 3\end{array} \right.\) Thể tích của hình hộp chữ nhật đã cho là: \(V = abc = 1.2.3 = 6\)(đvtt). Chọn A.