Đáp án:
Giải thích các bước giải:
a) Xét tam giác BDC và HBC có:
góc DCB chung; góc BHC = DBC (= 90o)
=> Tam giác BDC đồng dạng HBC (g - g)
b) => BCHC=DCBC⇒HC.DC=BC2⇒HC=BC2DC=15225=22525=9cmBCHC=DCBC⇒HC.DC=BC2⇒HC=BC2DC=15225=22525=9cm
HD=CD−HC=25−9=16cmHD=CD−HC=25−9=16cm
c) Áp dụng ĐL Pi ta go trong tam giác vuông BHC có: BH2 = BC2 - CH2 = 225 - 81 = 144 => BH = 12cm
Kẻ AK vuông góc với CD tại K
Tam giác ADK = BCH (do cạnh huyền AD = BC; góc ADK = BHC)
=> DK = CH = 9cm
Để có: Tứ giác ABhk là hình bình hành => AB = HK = CD - CH - DK = 25 - 9 - 9 = 7cm
SABCD = (AB + CD) . BH : 2 = (7 + 25) . 12 : 2 = 192 cm2