Cho \(\int\limits_0^3 {\left( {x - 3} \right)f'\left( x \right)dx} = 12\) và \(f\left( 0 \right) = 3\). Khi đó giá trị \(\int\limits_0^3 {f\left( x \right)dx} \) là: A.\( - 21.\) B.\( - 3.\) C.\(12.\) D.\(9.\)
Phương pháp giải: Sử dụng phương pháp tích phân từng phần: \(\int\limits_a^b {udv} = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \). Giải chi tiết:Ta có \(\int\limits_0^3 {\left( {x - 3} \right)f'\left( x \right)dx = 12} \) Đặt \(\left\{ \begin{array}{l}u = x - 3\\dv = f'\left( x \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = f\left( x \right)\end{array} \right.\) Khi đó \(\begin{array}{l}12 = \left. {\left( {x - 3} \right)f\left( x \right)} \right|_0^3 - \int\limits_0^3 {f\left( x \right)dx} \\ \Leftrightarrow 12 = - 3f\left( 0 \right) - \int\limits_0^3 {f\left( x \right)dx} \\ \Leftrightarrow 12 = - 3.3 - \int\limits_0^3 {f\left( x \right)dx} \\ \Leftrightarrow \int\limits_0^3 {f\left( x \right)dx} = - 21.\end{array}\) Chọn A.