Đáp án đúng: A
Giải chi tiết:Ta có: \(\begin{array}{l}{V_{C'.A'B'JI}} = \dfrac{1}{3}d\left( {C';\left( {A'B'JI} \right)} \right).{S_{A'B'JI}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{1}{3}d\left( {C';\left( {A'B'JI} \right)} \right).\dfrac{1}{2}{S_{ABB'A'}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{1}{2}{V_{C'.ABB'A'}}\end{array}\)Mà \({V_{C'.ABB'A'}} = \dfrac{2}{3}{V_{ABC.A'B'C'}} = \dfrac{2}{3}V\) nên \({V_{C'.A'B'JI}} = \dfrac{1}{2}.\dfrac{2}{3}V = \dfrac{1}{3}V\).Vậy \({V_{ABCIJC'}} = V - {V_{C'.A'BJI}} = V - \dfrac{1}{3}V = \dfrac{2}{3}V\).Chọn A