Đáp án: $C$
Giải thích các bước giải:
Gọi cạnh khối lập phương là $a\to $ Đường chéo $AC'=a\sqrt{3}$
$\to a\sqrt{3}=1\to a=\dfrac{1}{\sqrt{3}}$
Ta có:
$V_{AB'C'C}=\dfrac12V_{ABCC'B'}=\dfrac12\cdot \dfrac13\cdot AB\cdot S_{BB'C'C}$
$\to V_{AB'C'C}=\dfrac16\cdot BB'\cdot BB'^2$
$\to V_{AB'C'C}=\dfrac16 a^3$
$\to V_{AB'C'C}=\dfrac16 \cdot (\dfrac{1}{\sqrt{3}})^3$
$\to V_{AB'C'C}=\dfrac{\sqrt{3}}{54}$