Đáp án:
x>1
Giải thích các bước giải:
\(\begin{array}{l}
\sqrt P < P\\
\to P - \sqrt P > 0\\
\to \sqrt P \left( {\sqrt P - 1} \right) > 0\\
\to \left\{ \begin{array}{l}
\sqrt P - 1 > 0\\
\sqrt P \ne 0
\end{array} \right.\left( {do:\sqrt P > 0\forall P \ne 0} \right)\\
\to \left\{ \begin{array}{l}
P > 1\\
P \ne 0
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\dfrac{{\sqrt x }}{{\sqrt x - 1}} > 1\\
\dfrac{{\sqrt x }}{{\sqrt x - 1}} \ne 0
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\dfrac{{\sqrt x - \sqrt x + 1}}{{\sqrt x - 1}} > 0\\
x \ne 0;x \ne 1;x \ge 0
\end{array} \right.\\
\to \dfrac{1}{{\sqrt x - 1}} > 0\\
\to \sqrt x - 1 > 0\\
\to x > 1
\end{array}\)