Cho \(P = \frac{{3\sqrt a }}{{\sqrt a + 2}} + \frac{{\sqrt a + 1}}{{\sqrt a - 2}} + \frac{{5\sqrt a + 2}}{{4 - a}}\,\,\,\left( {a \ge 0;a \ne 4} \right)\)
1) Rút gọn P 2) Tính P khi \(a = \sqrt[3]{{1 + \frac{{\sqrt {84} }}{9}}} + \sqrt[3]{{1 - \frac{{\sqrt {84} }}{9}}}\) .
A.1) 
\(P=\frac{4\sqrt{a}}{\sqrt{a}+2}\)
2)\(P = \frac{5}{3}\).
B.1) 
\(P=\frac{4\sqrt{a}}{\sqrt{a}+2}\)
2)\(P = \frac{4}{3}\).
C.1) 
\(P=\frac{4\sqrt{a}}{\sqrt{a}+2}\)
2)\(P = \frac{4}{7}\).
D.1) 
\(P=\frac{4\sqrt{a}}{\sqrt{a}-2}\)
2)\(P = \frac{4}{3}\).

Các câu hỏi liên quan