$I$ là trung điểm của $BC$
Thật vậy:
Dựng $BJ\parallel=AC$
$\Rightarrow ABJC$ là hình bình hành
Theo quy tắc hình bình hành
$\vec{AB}=\vec{AC}=\vec{AJ}$
Tứ giác $ABJC$ là hình bình hành $I$ là trung điểm $BC$
$\Rightarrow I$ là trung điểm của $AJ$
$\Rightarrow \vec{AB}=\vec{AC}=\vec{AJ}=2\vec{AI}$ (đpcm).