Đáp án:
a) Xét ΔABM và ΔACM có:
+ AB = AC
+ góc BAM = góc CAM
+ AM chung
=>ΔABM = ΔACM (c-g-c)
=> góc ABM = góc ACM
b) Ta có E đối xứng với A qua M
=> góc AMB = góc EMB (đối đỉnh)
c) Do ΔABM = ΔACM nên góc AMB = góc AMC
Mà tổng 2 góc bằng 180 độ
=> góc AMB = góc AMC = 90 độ
Xét ΔAMC và ΔEMC có:
+ AM = EM
+ góc AMC = góc EMC = 90 độ = góc AMB
+ MC chung
=> ΔAMC = ΔEMC (c-g-c)
=> AC = CE
d) Do ΔAMC = ΔEMC nên góc CAM = góc CEM
Vậy góc CAM = góc CEM
e)
Ta có góc AMC = góc BME = 90 độ (đối đỉnh)
=> góc BME = góc CME = 90 độ