Giải thích các bước giải:
Ta có:
$\dfrac{\sin C}{\sin B}=2\cos A$
$\to \sin C=2\sin B\cos A$
$\to \sin C=\sin (A+B)-\sin (A-B)$
$\to \sin C=\sin(180^o-C)-\sin(A-B)$
$\to \sin C=\sin(C)-\sin(A-B)$
$\to \sin(A-B)=0$
$\to A-B=0$
$\to A=B$
$\to \Delta ABC$ cân tại $C$