Giải thích các bước giải:
Ta có:
$\Delta ABN$ vuông tại $N\to \tan\widehat{ABN}=\dfrac{AN}{BN}$
$\to BN=\dfrac{AN}{\tan\widehat{ABN}}=\dfrac{AN}{\tan38^o}$
Lại có $\Delta ACN$ vuông tại $N$
$\to \tan\widehat{ACN}=\dfrac{AN}{CN}$
$\to CN=\dfrac{AN}{\tan\widehat{ACN}}=\dfrac{AN}{\tan30^o}$
$\to BC=BN+CN=\dfrac{AN}{\tan38^o}+\dfrac{AN}{\tan30^o}$
$\to AN(\dfrac{1}{\tan38^o}+\dfrac{1}{\tan30^o})=11$
$\to AN\approx 3.65$
$\to AC=\sqrt{AN^2+CN^2}\approx 7.3$