Đáp án:
a) Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
BM=CM(AM là đường trung tuyến ứng với cạnh BC của ΔABC)
ˆEBM=ˆFCMEBM^=FCM^(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBEM=ΔCFM(cạnh huyền-góc nhọn)
b) Ta có: ΔBEM=ΔCFM(cmt)
⇒ME=MF(hai cạnh tương ứng)
hay M nằm trên đường trung trực của EF(tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: ΔBEM=ΔCFM(cmt)
⇒BE=CF(hai cạnh tương ứng)
Ta có: AE+BE=AB(E nằm giữa A và B)
AF+CF=AC(F nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và BE=CF(cmt)
nên AE=AF
hay A nằm trên đường trung trực của EF(tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của EF(đpcm)
c) Ta có: ˆABC+ˆDBC=ˆABDABC^+DBC^=ABD^(tia BC nằm giữa hai tia BA,BD)
⇒ˆABC+ˆDBC=900ABC^+DBC^=900
hay ˆDBC=900−ˆABCDBC^=900−ABC^(3)
Ta có: ˆACB+ˆDCB=ˆACDACB^+DCB^=ACD^(tia CB nằm giữa hai tia CA,CD)
⇒ˆACB+ˆDCB=900ACB^+DCB^=900
hay ˆDCB=900−ˆACBDCB^=900−ACB^(4)
Ta có: ΔABC cân tại A(gt)
⇒ˆABC=ˆACBABC^=ACB^(hai góc ở đáy)(5)
Từ (3), (4) và (5) suy ra ˆDBC=ˆDCBDBC^=DCB^
Xét ΔDBC có ˆDBC=ˆDCBDBC^=DCB^(cmt)
nên ΔDBC cân tại D(định lí đảo của tam giác cân)
hay DB=DC
⇒D nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(6)
Ta có: MB=MC(AM là đường trung tuyến ứng với cạnh BC của ΔABC)
nên M nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(7)
Ta có: AB=AC(ΔABC cân tại A)
hay A nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(8)
Từ (6),(7) và (8) suy ra A,M,D thẳng hàng(đpcm)
Giải thích các bước giải: