Giải thích các bước giải:
Kẻ AH⊥BD(H∈BD)AH⊥BD(H∈BD)
Theo định lí Pytago trong các△ vuông ABH(Hˆ=90o)và △AOH(Hˆ=90o)△ vuông ABH(H^=90o)và △AOH(H^=90o) có
AH2+BH2=AB2=36(1)AH2+OH2=OA2=64→AH2+(OB+BH)2=64o→AH2+BH2+8.BH+16=64→AH2+BH2+8.BH=48(2)AH2+BH2=AB2=36(1)AH2+OH2=OA2=64→AH2+(OB+BH)2=64o→AH2+BH2+8.BH+16=64→AH2+BH2+8.BH=48(2)
Từ (1) và (2) →8.BH=12→BH=1,5→8.BH=12→BH=1,5
Thay BH=1,5 vào (1) ta có AH2+1,52=36→AH2=33,75AH2+1,52=36→AH2=33,75
Xét △ vuông ADH(Hˆ=90o)△ vuông ADH(H^=90o). Theo định lí Pytago ta có
AD2=AH2+DH2=33,75+(1,5+4+6)2=33,75+132,25=166→AD=166−−−√AD2=AH2+DH2=33,75+(1,5+4+6)2=33,75+132,25=166→AD=166
Vậy AD=166−−−√ cmAD=166 cm
CHÚC BN HỌC TỐT