$y=sin2x+cos^2x$
$=sin2x+cos2x+1$
$=\sqrt[]{2}sin(2x+\dfrac{\pi}{4})+1$
$-1≤sin(2x+\dfrac{\pi}{4})≤1$
$⇔-\sqrt[]{2}≤\sqrt[]{2}sin(2x+\dfrac{\pi}{4})≤\sqrt[]{2}$
$⇔1-\sqrt[]{2}≤\sqrt[]{2}sin(2x+\dfrac{\pi}{4})+1≤1+\sqrt[]{2}$
Vậy $GTLN:y=1+\sqrt[]{2}⇒D$