`\frac{(n-1).n.(n+1)(n+2)}{4}+\frac{n.(n+1)}{2}`
`=\frac{[(n-1).(n+1)].n.(n+2)}{4}+\frac{2n.(n+1)}{4}`
`=\frac{(n^2-1)(n^2+2n)+(2n^2+2n)}{4}`
`= \frac{n^4+2n^3-n^2-2n+2n^2+2n}{4}`
`= \frac{n^4+2n^3+n^2}{4}`
`= \frac{n^2.(n^2+2n+1)}{4}`
`= \frac{n^2.(n+1)^2}{4}`
`= \frac{[n.(n+1)]^2}{2^2}=\frac{[n.(n+1)]^2}{(-2)^2}`
`= (\frac{n^2+n}{2})^2=(\frac{n^2+n}{-2})^2.`