1/
a, A = \(x^2+10x+29\)
=> A = \(x^2+10x+25+4\)
=> A = \(\left(x+5\right)^2+4\)
Ta thấy:
\(\left(x+5\right)^2\ge0\) với mọi x
=> \(\left(x+5\right)^2+4\ge4>0\)
=> \(\left(x+5\right)^2+4>0\)
hay \(A>0\)
Vậy biểu thức A luôn dương với mọi giá trị của x
b,B = \(x^2+5x+7\)
=> B = \(x^2+5x+\dfrac{25}{4}+\dfrac{3}{4}\)
=> B = \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{3}{4}\)
Ta thấy:
\(\left(x+\dfrac{5}{2}\right)^2\ge0\) với mọi x
=> \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
=> \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{3}{4}>0\)
hay \(B>0\)
Vậy biểu thức B luôn dương với mọi giá trị của x
c,\(C=25x^2+20x+11\) => \(C=25x^2+20x+4+7\)
=> C = \(\left(5x+2\right)^2+7\)
Ta thấy:
\(\left(5x+2\right)^2\ge0\) với mọi x
=> \(\left(5x+2\right)^2+7\ge7>0\)
=> \(\left(5x+2\right)^2+7>0\)
hay \(C>0\)
Vậy biểu thức C luôn dương với mọi giá trị của x