Chứng minh rằng: 1/(tana+tanb) - 1/(Cota+Cotb) = Cot(a+b)
Lời giải:
Sử dụng các công thức sau:
\(\bullet \tan \alpha=\frac{1}{\cot \alpha}\)
\(\bullet \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan\alpha.\tan \beta}\)
Ta có:
\(\text{VT}=\frac{1}{\tan a+\tan b}-\frac{1}{\cot a+\cot b}=\frac{1}{\tan a+\tan b}-\frac{1}{\frac{1}{\tan a}+\frac{1}{\tan b}}\)
\(=\frac{1}{\tan a+\tan b}-\frac{\tan a\tan b}{\tan a+\tan b}=\frac{1-\tan a\tan b}{\tan a+\tan b}\)
\(=\frac{1}{\frac{\tan a+\tan b}{1-\tan a\tan b}}=\frac{1}{\tan (a+b)}=\cot (a+b)=\text{VP}\)
Ta có đpcm.
Cho tam giác vuông cân ABC với \(\widehat{A}=90^o\). Tính độ dài của vecto \(\overrightarrow{BA}+\overrightarrow{BC}\), biết AB = 5 cm.
Giải BPT:
a) 4x2 \(\le\) 1
b)x2 +2x+1>0
c) x2 - 4 \(\ge\) 0
d) -x2 +4x+5>0
e) x2 -2x+1<9
f) 2x2 >0
Em cảm ơn!
Cho tam giác ABC. Tìm tập hợp điểm M sao cho: \(\left|\overrightarrow{MA}+\overrightarrow{MB}-2\overrightarrow{MC}\right|=\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Cho A=( \(-\infty\); 9a); B = (\(\dfrac{4}{a}\); \(+\infty\)). Tìm a để A\(\cap\)B\(e\varnothing\) với a<0.
Chứng minh rằng:
T=2+22+23+24+-.287+288+289+290và chia hết cho 7
Giải PT:
a. \(2x+\dfrac{x-1}{x}-\sqrt{1-\dfrac{1}{x}}-3\sqrt{x-\dfrac{1}{x}}=0\)
b.\(\sqrt{12-\dfrac{12}{x^2}}+\sqrt{x^2-\dfrac{12}{x^2}}=x^2\)
cho x, y, z >0 thỏa mãn x+y+z=1
chứng minh rằng :\(\dfrac{3}{xy+yz+xz}+\dfrac{2}{x^{2^{ }}+y^{2^{ }}+z^{2^{ }}}\)≥14
Cho a,b,c là số đo ba cạnh của một tam giác. Chứng minh rằng:
4a2b2>(a2+b2-c2)2
Giải hpt sau:
\(\left\{{}\begin{matrix}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{matrix}\right.\)
Giúp mình nhé, mình cần gấp ạ :(
Thanks nhiều ạ :*
giải phương trình :
\(\dfrac{1}{x-2008}+\dfrac{1}{2x+2009}=\dfrac{1}{6x-2010}-\dfrac{1}{3x-2011}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến