Chứng minh rằng : Nếu \(0 > N\)\(e1\) điều kiện ắt có và đủ để ba số dương a, b, c tạo thành một cấp số nhân (theo thứ tự đó) là :
\(\frac{\log_aN}{\log_cN}=\frac{\log_aN-\log_bN}{\log_bN-\log_cN}\) \(\left(a,b,ce1\right)\)
Theo giả thiết, nếu ba dố a, b, c lập thành cấp số nhân thì : \(ac=b^2\)(1)
Lấy Logarit cơ số N hai vế của (1) ta có :
\(\Leftrightarrow\log_N\left(ac\right)=\log_Nb^2\Leftrightarrow\log_Na+\log_Nc=2\log_Nb\left(2\right)\)
Sử dụng công thức đổi cơ số :
Từ (2) \(\Leftrightarrow\frac{1}{\log_aN}+\frac{1}{\log_cN}=\frac{2}{\log_bN}\Leftrightarrow\frac{1}{\log_aN}-\frac{1}{\log_bN}=\frac{1}{\log_bN}-\frac{1}{\log_cN}\)
\(\Leftrightarrow\frac{\log_bN-\log_aN}{\frac{1}{\log_aN}.\frac{1}{\log_bN}}=\frac{\log_cN-\log_bN}{\frac{1}{\log_cN}.\frac{1}{\log_bN}}\Leftrightarrow\frac{\log_bN-\log_aN}{\frac{1}{\log_cN}-\frac{1}{\log_bN}}=\frac{\log_aN}{\log_cN}\)
\(\Rightarrow\frac{\log_aN-\log_bN}{\frac{1}{\log_bcN}-\frac{1}{\log_cN}}=\frac{\log_aN}{\frac{1}{\log_cN}}\)
Cho 3 số : x; 3; y lập thành một cấp số nhân và \(x^4=y\sqrt{3}\). Tìm x, y và công bội q của cấp số đó ?
Cho 3 số tạo thành một cấp số nhân mà tổng của chúng bằng 93. Ta có thể sắp đặt chúng (theo thứ tự của cấp số nhân kể trên) như là số hạng thứ nhất, thứ hai và thứ bẩy của một cấp số cộng. Tìm ba số đó ?
Tìm bốn số biết rằng ba số hạng đầu lập thành một cấp số nhân, ba số hạng sau lập thành một cấp số công. Tổng của hai số hạng đầu và cuối bằng 14, còn tổng của 2 số ở giữa là 12 ?
Tổng của số hạng thứ hai và thứ tư của một cấp số nhân tăng nghiêm ngặt là 30 và tích của chúng bằng 144. Tìm tổng mười số hạng đầu tiên của dãy số đó ?
Cho tam giác ABC có \(A=90^0\), còn a, b, \(\frac{\sqrt{6}}{3}\), c theo thứ tự đó lập thành một cấp số nhân. Tam giác ABC là tam giác có đặc điểm gì ?
Bài 4.10 (Sách bài tập trang 126)
Giải phương trình :
\(ax^3+bx^2+cx+d=0\)
biết \(a,b,c,d\) là một cấp số nhân với công bội \(q\)
Cho tam giác ABC cân (AB = AC), có cạnh đáy BC, đường cao AH, cạnh bên AB theo thứ tự đó lập thành một cấp số nhân. Hãy tính công bội q của cấp số nhân đó ?
Bài 4.6 (Sách bài tập trang 126)
Viết bốn số xen giữa các số 5 và 160 để được một cấp số nhân ?
Bài 4.1 (Sách bài tập trang 125)
Cho dãy số \(\left(u_n\right)=\left(-3\right)^{2n-1}\)
a) Chứng minh dãy số \(\left(u_n\right)\) là cấp số nhân. Nêu nhận xét về tính tăng, giảm của dãy số
b) Lập công thức truy hồi của dãy số
c) Hỏi số -19683 là số hạng thứ mấy của dãy số ?
An đọc 1 quyển sách trong 4 ngày , ngày thứ 1 nếu đọc thêm 5 trang nữa thì được 1/5 quyển sách ,ngày thứ 2 đọc được 1/5 số trang conlai và 7 trang ngày thứ 3 đọc được 2/5 số trang còn lại ,ngày thứ 4 đọc được 2/3 số trang còn lại và 41 trang cưới .Hỏi quyển sách dày bao nhiêu trang ?
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến