4$y^{2}$$z^{2}$ -($y^{2}$+$z^{2}$-$x^{2}$)$^{2}$
=$(2yz)^{2}$ - ($y^{2}$+$z^{2}$-$x^{2}$)$^{2}$
=[2yz-($y^{2}$+$z^{2}$-$x^{2}$)][2yz+($y^{2}$+$z^{2}$-$x^{2}$)]
=[2yz-$y^{2}$-$z^{2}$+$x^{2}$][2yz+$y^{2}$+$z^{2}$-$x^{2}$]
==$[(y+z)^2−x^2][x^2−(y−z)]^2$
=(y+z−x)(x+y+z)(x−y+z)(x+y−z)>0