$y = 2 \sin x + \tan x - 3x$
$\to y'= 2 \cos x + \dfrac{1}{\cos ^2 x} - 3$
$\Leftrightarrow 2 \cos ^3 x +1 - 3\cos ^2 x =0$
$\to \left[ \begin{array}{l}\cos x = \dfrac{-1}{2}\\\cos x =1\end{array} \right.$
$\to \left[ \begin{array}{l}x=\dfrac{2\pi}{3}+k2\pi\\x=-\dfrac{2\pi}{3}+k2\pi\\x=k2\pi\end{array} \right.(k \in \mathbb{Z}) $
BBT :
$\begin{array}{c|ccccccccc} x & -\infty & & \dfrac{-2\pi}{3}& & \dfrac{2\pi}{3} & & +\infty \\ \hline y' & &- & & + & & - \\ \end{array}$
Vậy nhìn vào BBT được $\boxdot$