Đáp án:
`26. B < 3/5`
`27. P = 1`
Giải thích các bước giải:
`26.`
`B = 1/3 + 1/16 + 1/19 + 1/21 + 1/61 + 1/72 + 1/83 + 1/94`
`-> B = 1/3 + (1/16 + 1/19 + 1/21 ) + (1/61 + 1/72 + 1/83 + 1/94)`
$\bullet$ `1/16 + 1/19 + 1/21`
Vì `15 < 16`
`-> 1/16 < 1/15`
Tương tự ta có :
`1/19 < 1/15`
`1/21 < 1/15`
Cộng theo vế ta được :
`-> 1/16 + 1/19 + 1/21 < 1/15 + 1/15 + 1/15`
`-> 1/16 + 1/19 + 1/21 < 1/5` `(1)`
$\bullet$ `1/61 + 1/72 + 1/83 + 1/94`
Vì `60 < 61`
`-> 1/61 < 1/60`
Tương tự ta có :
`1/72 < 1/60`
`1/83< 1/60`
`1/94 < 1/60`
Cộng theo vế ta được :
`-> 1/61 + 1/72 + 1/83 + 1/94 < 1/60 + 1/60 + 1/60 + 1/60`
`-> 1/61 + 1/72 + 1/83 + 1/94 < 1/15` `(2)`
Lấy `(1) + (2)` vế với vế ta được :
`-> (1/16 + 1/19 + 1/21) + (1/61 + 1/72 + 1/83 + 1/94) < 1/5 + 1/15`
`-> 1/3 + (1/16 + 1/19 + 1/21 ) + (1/61 + 1/72 + 1/83 + 1/94) < 1/3 + 1/5 + 1/15`
`-> B < 3/5`
Vậy `B < 3/5`
`27.`
$P = \dfrac{\dfrac{1}{51} + \dfrac{1}{52} + ... + \dfrac{1}{100} }{\dfrac{1}{1.2} + \dfrac{1}{3.4} + ... + \dfrac{1}{99.100} }$
Có : `1/(1.2) + 1/(3.4) + ... + 1/(99.100)`
`= (2-1)/(1.2) + (4-3)/(3.4) + ... + (100-99)/(99.100)`
`= 1 - 1/2 + 1/3 - 1/4 + ... + 1/99 - 1/100`
`= (1 + 1/3 + ... + 1/99) + (-1/2 - 1/4 - ... - 1/100)`
`= (1+1/3+...+1/99) - (1/2 + 1/4+...+1/100)`
`= (1+1/3+...+1/99) - (1/2 + 1/4+...+1/100) - (1/2 + 1/4 +... + 1/100) + (1/2 + 1/4+...+1/100)`
`= (1+1/3+...+1/99) - 2 (1/2 + 1/4 + 1/100) + (1/2 + 1/4 + ... + 1/100)`
`= (1+1/2+1/3+...+1/100) - (1 + 1/2 + ... + 1/50)`
`= 1+1/2+...+1/100 - 1 - 1/2-...-1/50`
`= (1-1) + (1/2 - 1/2) + ... + (1/50 - 1/50) + 1/51 + 1/52 + ... + 1/100`
`= 1/51 + 1/52 + ... + 1/100`
$→ P = \dfrac{\dfrac{1}{51} + \dfrac{1}{52} + ... + \dfrac{1}{100} }{\dfrac{1}{51} + \dfrac{1}{52} + ... + \dfrac{1}{100} }$
`-> P = 1`
Vậy `P=1`