vì là tam giác đều nên tâm đường tròn ngoại tiếp cũng trùng với trọng tâm của tam giác và trùng với trực tâm của tam giác.
Gọi tam giác đều là tam giác ABC,tâm tam giác đều là O ,từ A kẻ AH⊥BC .
=> AH=$\sqrt[]{HB^{2}+AB^{2}}$ Vì AH là đường trung tuyến=>HB=1/2.AB
=>AH=$\sqrt[]{ AB^{2}-(\frac{AB}{2})^{2}}$= $\frac{\sqrt[]{3}}{2}$ AB
vì O là tâm tam giác=>AO là bán kính đường tròn ngoại tiếp
=>AO =R=2/3.AH= $\frac{\sqrt[]{3}}{3}$ .ABvới AB là cạnh của tam giác đều
vậy R= $\frac{\sqrt[]{3}}{3}$ .a trong đó a là độ dài cạnh của tam giác đều