Đáp án:
\(x = \frac{{5\pi }}{{48}}\)
Giải thích các bước giải:
\(\begin{array}{l}
cos\left( {2x - \frac{\pi }{4}} \right) - \sin \left( {2x + \frac{\pi }{3}} \right) = 0\\
\Leftrightarrow cos\left( {2x - \frac{\pi }{4}} \right) = \sin \left( {2x + \frac{\pi }{3}} \right)\\
\Leftrightarrow \sin \left( {\frac{\pi }{2} - 2x + \frac{\pi }{4}} \right) = \sin \left( {2x + \frac{\pi }{3}} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
\frac{{3\pi }}{4} - 2x = 2x + \frac{\pi }{3}\\
\frac{{3\pi }}{4} - 2x = \frac{{2\pi }}{3} - 2x
\end{array} \right.\\
\Leftrightarrow x = \frac{{5\pi }}{{48}}
\end{array}\)