Đáp án:
{ y = 5x - 4
{ y = 11x - 16
Giải thích các bước giải: Gọi I(1; 2) là tâm và R = √5 là bán kính của (C);
a) Ta có MI² = (6 - 1)² + (2 - 2)² = 25 > R² ⇔ MI > R ⇒ M ở ngoài (C)
b) Gọi N(xN; yN) là trung điểm dây AB ⇒ MA + MB = 2MN
Theo tính chất cát tuyến : MA.MB = MI² - R² = 25 - 5 = 20
MA² + MB² = 50 ⇔ (MA + MB)² - 2MA.MB = 50 ⇔ (2MN)² = 50 + 2MA.MB = 50 + 40 = 90 ⇔ 2MN² = 45 ⇔ 2[(xN - 6)² + (yN - 2)²] = 45 (1)
Tọa độ vecto MN (xN - 6; yN - 2); Tọa độ vec tơ IN(xN - 1; yN - 2)
MN⊥IN ⇔ (xN - 6)(xN - 1) + (yN - 2)² = 0 ⇔ (yN - 2)² = - (xN - 6)(xN - 1) (2)
Thay (2) vào (1) có : 2[(xN - 6)² - (xN - 6)(xN - 1)] = 45
⇒ xN = 3/2 thay vào (2) ⇒ yN = 7/2; yN = 1/2
⇒ Tọa độ N(3/2; 7/2) và N(3/2; 1/2)
Vậy có 2 PTĐT MN cần lập là :
{ y = 5x - 4
{ y = 11x - 16