Đáp án:
$\begin{array}{l}
\lim \frac{{\sqrt {{n^2} + n} - {n^2} + n}}{{\sqrt {4{n^4} + n} - 2{n^2}}}\\
= \lim \frac{{\left( {\sqrt {{n^2} + n} - {n^2} + n} \right).\left( {\sqrt {4{n^4} + n} + 2{n^2}} \right)}}{{4{n^4} + n - 4{n^4}}}\\
= \lim \frac{{\left( {\sqrt {{n^2} + n} - {n^2} + n} \right).\left( {\sqrt {4{n^4} + n} + 2{n^2}} \right)}}{n}\\
= \infty
\end{array}$