Đáp án:
`ĐKXĐ : y ≥ 2000 ; z ≥ 2001 ; x ≥ 2002`
Ta có
`\sqrt{y - 2000} + \sqrt{z - 2001} + \sqrt{x - 2002} = 1/2 (x + y + z) - 3000`
`<=> 2\sqrt{y - 2000} + 2\sqrt{z - 2001} + 2\sqrt{x - 2002} = x + y + z - 6000`
`<=> x + y + z - 2\sqrt{y - 2000} - 2\sqrt{z - 2001} - 2\sqrt{x - 2002} - 6000 = 0`
`<=> [(y - 2000) - 2\sqrt{y - 2000} + 1] + [(z - 2001) - 2\sqrt{z - 2001} + 1] + [(x - 2002) - 2\sqrt{x - 2002} + 1] = 0`
`<=> (\sqrt{y - 2000} - 1)^2 + (\sqrt{z - 2001} - 1)^2 + (\sqrt{x - 2002} - 1)^2 = 0`
`<=> {\sqrt{y - 2000} - 1 = 0`
`{\sqrt{z - 2001} - 1 = 0`
`{\sqrt{x - 2002} - 1 = 0`
`<=> {\sqrt{y - 2000} = 1`
`{\sqrt{z - 2001} = 1`
`{\sqrt{x - 2002} = 1`
`<=> {y - 2000 = 1`
`{z - 2001 = 1`
`{x - 2002 = 1`
`<=> {y = 2001`
`{z = 2002`
`{x = 2003`
Giải thích các bước giải: