Đáp án:
Giải thích các bước giải:
C = $\sqrt[]{4-\sqrt[]{7}}$ - $\sqrt[]{4+\sqrt[]{7}}$
C = $\frac{1}{√2}$.( $\sqrt[]{8-2.\sqrt[]{7}}$ - $\sqrt[]{8+2\sqrt[]{7}}$)
C = $\frac{1}{√2}$.( $\sqrt[]{7-2.\sqrt[]{7}+1}$ - $\sqrt[]{7+2\sqrt[]{7}}$+1)
C = $\frac{1}{√2}$.( $\sqrt[]{(\sqrt[]{7}-1)^2}$ - ( $\sqrt[]{(\sqrt[]{7}+1)^2}$)
C = $\frac{1}{√2}$. ($\sqrt[]{7}$ - 1 - $\sqrt[]{7}$ - 1)
C = $\frac{1}{√2}$.(-2)
C = - √2
D = $\sqrt[]{\sqrt[]{3}-\sqrt[]{2}}$ - $\sqrt[]{\sqrt[]{3}+\sqrt[]{2}}$
D² = ($\sqrt[]{3}$ - $\sqrt[]{2}$) + $\sqrt[]{3}$ + $\sqrt[]{2}$ + 2.($\sqrt[]{3}$- $\sqrt[]{2}$)($\sqrt[]{3}$+ $\sqrt[]{2}$2
D² = $\sqrt[]{3}$ + 2.(3-2) = 2$\sqrt[]{3}$+2
D = $\sqrt[]{2\sqrt[]{3}+2}$