Bài `1:`
`a)`
`(6x^3 - 7x^2 - x + 2) : (2x+1)`
`= [(6x^3 - 10x^2 + 4x) + (3x^2 - 5x +2) ] : (2x+1)`
` = [ 2x (3x^2 - 5x + 2) + (3x^2 - 5x + 2)] : (2x+1)`
`= (2x+1)(3x^2 - 5x + 2) : (2x+1)`
`= 3x^2 - 5x + 2`
`b)`
`(x^4 - x^3 + x^2 + 3x) : (x^2 - 2x + 3)`
`= [ (x^4 - 2x^3 + 3x^2) + (x^3 - 2x^2 + 3x)] : (x^2 - 2x+3)`
`= [ x^2 (x^2 - 2x + 3) + x (x^2 - 2x + 3) ] : (x^2 - 2x+3)`
` = (x^2 + x)(x^2 - 2x + 3) : (x^2 - 2x+3)`
` = x^2+ x`
`c)`
`(x^2 - y^2 + 6x + 9) : (x + y+ 3)`
`= [ (x^2 + 6x + 9) - y^2] : (x+y+3)`
`= [ (x+3)^2- y^2] : (x+y+3)`
` = (x + 3 - y)(x+3+y) : (x+y+3)`
` = x + 3 - y`
`d)`
`(x^2 + 12x - y^2 + 36) : (x-y +6)`
` = [ (x^2 + 12x + 36) - y^2] : (x-y + 6)`
` = [ (x+6)^2 - y^2] : (x-y+6)`
`= (x + 6 - y)(x + 6+ y) : (x-y + 6)`
`= x+6+y`
Bài `2:`
`a)`
`2/3x (x^2 -4) =0`
`=> x= 0` hoặc `x^2 - 4=0`
`+) x = 0`
`+) x^2 - 4 = 0`
`=> x^2 = 4`
`=> x^2 = (+-2)^2`
`=> x = +-2`
Vậy `x \in {0 ; 2 ; -2}`
`b)`
`(x+2)^2 - (x-2)(x+2) =0`
`=> (x+2) [ (x+2) - (x-2)] = 0`
`=> (x+2) . (x + 2 - x + 2) = 0`
`=> (x+2) . 4 =0`
`=>x+2=0`
`=>x=-2`
Vậy `x=-2`
`c)`
`x + 2x^2+ x^3 = 0`
`=> x (1 + 2x + x^2) = 0`
`=> x (x + 1)^2= 0`
`=> x=0` hoặc `(x+1)^2=0`
`+) x=0`
`+) (x+1)^2= 0`
`=> x + 1=0`
`=>x=-1`
Vậy `x \in {0;-1}`