Phương pháp giải: - Tìm ĐKXĐ của hàm số. - Sử dụng định nghĩa các đường tiệm cận của đồ thị hàm số \(y = f\left( x \right)\): + Đường thẳng \(y = {y_0}\) được gọi là TCN của đồ thị hàm số \(y = f\left( x \right)\) nếu thỏa mãn một trong các điều kiện sau: \(\mathop {\lim }\limits_{x \to + \infty } y = {y_0}\), \(\mathop {\lim }\limits_{x \to - \infty } y = {y_0}\). + Đường thẳng \(x = {x_0}\) được gọi là TCN của đồ thị hàm số \(y = f\left( x \right)\) nếu thỏa mãn một trong các điều kiện sau: \(\mathop {\lim }\limits_{x \to x_0^ + } y = + \infty \), \(\mathop {\lim }\limits_{x \to x_0^ + } y = - \infty \), \(\mathop {\lim }\limits_{x \to x_0^ - } y = + \infty \), \(\mathop {\lim }\limits_{x \to x_0^ - } y = - \infty \). Giải chi tiết:TXĐ: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\). Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{\sqrt {{x^2} + 1} }}{{x - 1}} = + \infty ,\,\,\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{\sqrt {{x^2} + 1} }}{{x - 1}} = - \infty \) Suy ra \(x = 1\) là tiệm cận đứng của đồ thị hàm số. \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{\sqrt {{x^2} + 1} }}{{x - 1}} = 1,\,\,\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\sqrt {{x^2} + 1} }}{{x - 1}} = - 1\) Suy ra \(y = 1,\,\,y = - 1\) là tiệm cận ngang của đồ thị hàm số. Vậy đồ thị hàm số đã cho có tất cả 3 đường tiệm cận. Chọn A.