Xét các khẳng định sau:
i. Nếu giá trị nhỏ nhất của hàm đa thức bậc bốn \(y = f\left( x \right)\) trên \(\mathbb{R}\) bằng \(m\) thì có số thực \({x_1}\) thỏa mãn \(f\left( {{x_1}} \right) = m,\,\,f\left( x \right) > m\,\,\forall x \in \left( { - \infty ; + \infty } \right)\backslash \left\{ {{x_1}} \right\}\).
ii. Nếu giá trị nhỏ nhất của hàm đa thức bậc bốn \(y = f\left( x \right)\) trên \(\mathbb{R}\) bằng \(m\) thì có số thực \({x_1}\) thỏa mãn \(f\left( {{x_1}} \right) = m,\,\,f\left( x \right) \ge m\,\,\forall x \in \left( { - \infty ; + \infty } \right)\backslash \left\{ {{x_1}} \right\}\).
iii. Nếu giá trị lớn nhất của hàm đa thức bậc bốn \(y = f\left( x \right)\) trên \(\mathbb{R}\) bằng \(M\) thì có số thực \({x_2}\) thỏa mãn \(f\left( {{x_2}} \right) = M,\,\,f\left( x \right) < M\,\,\forall x \in \left( { - \infty ; + \infty } \right)\backslash \left\{ {{x_2}} \right\}\).
iv. Nếu giá trị lớn nhất của hàm đa thức bậc bốn \(y = f\left( x \right)\) trên \(\mathbb{R}\) bằng \(M\) thì có số thực \({x_2}\) thỏa mãn \(f\left( {{x_2}} \right) = M,\,\,f\left( x \right) \le M\,\,\forall x \in \left( { - \infty ; + \infty } \right)\backslash \left\{ {{x_2}} \right\}\).
Số khẳng định đúng là:
A.\(4\)
B.\(3\)
C.\(1\)
D.\(2\)