$$\eqalign{
& y = {\left( {{x^2} - x} \right)^2}\,\,\left( {TXD:\,\,D = R} \right) \cr
& y' = 2\left( {{x^2} - x} \right)\left( {2x - 1} \right) \cr
& Cho\,\,y' = 0 \Leftrightarrow \left[ \matrix{
{x^2} - x = 0 \hfill \cr
2x - 1 = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = 1 \hfill \cr
x = {1 \over 2} \hfill \cr} \right. \cr
& BXD: \cr
& x\,\,\,\,\, - \infty \,\,\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\,\,\,\,\,{1 \over 2}\,\,\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\, + \infty \cr
& y'\,\,\,\,\,\,\,\,\,\,\,\, - \,\,\,\,\,0\,\,\,\, + \,\,\,\,0\,\,\,\,\,\,\, - \,\,\,\,0\,\,\,\,\,\,\, + \cr
& \Rightarrow Ham\,\,so\,\,NB/\left( { - \infty ;0} \right);\,\,\left( {{1 \over 2};1} \right) \cr
& \,\,\,\,Ham\,\,so\,\,DB/\left( {0;{1 \over 2}} \right);\left( {1; + \infty } \right) \cr} $$