Đáp án:
\(\begin{array}{l}
a,\\
Q = - \dfrac{{a - 1}}{{\sqrt a }}\\
b,\\
a > 1\\
c,\\
a = 3 + 2\sqrt 2 \\
d,\\
T < 1,\,\,\,\forall a > 0,a \ne 1
\end{array}\)
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
Q = {\left[ {\dfrac{{\sqrt a }}{2} - \dfrac{1}{{2\sqrt a }}} \right]^2}.\left[ {\dfrac{{\sqrt a - 1}}{{\sqrt a + 1}} - \dfrac{{\sqrt a + 1}}{{\sqrt a - 1}}} \right]\\
= {\left[ {\dfrac{{\sqrt a .\sqrt a - 1}}{{2\sqrt a }}} \right]^2}.\left[ {\dfrac{{{{\left( {\sqrt a - 1} \right)}^2} - {{\left( {\sqrt a + 1} \right)}^2}}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}} \right]\\
= {\left( {\dfrac{{a - 1}}{{2\sqrt a }}} \right)^2}.\dfrac{{\left( {a - 2\sqrt a + 1} \right) - \left( {a + 2\sqrt a + 1} \right)}}{{{{\sqrt a }^2} - 1}}\\
= {\left( {\dfrac{{a - 1}}{{2\sqrt a }}} \right)^2}.\dfrac{{a - 2\sqrt a + 1 - a - 2\sqrt a - 1}}{{a - 1}}\\
= {\left( {\dfrac{{a - 1}}{{2\sqrt a }}} \right)^2}.\dfrac{{ - 4\sqrt a }}{{a - 1}}\\
= \dfrac{{a - 1}}{{2\sqrt a }}.\dfrac{{ - 2}}{1}\\
= - \dfrac{{a - 1}}{{\sqrt a }}\\
b,\\
Q < 0\\
\Leftrightarrow - \dfrac{{a - 1}}{{\sqrt a }} < 0\\
\Leftrightarrow \dfrac{{a - 1}}{{\sqrt a }} > 0\\
\sqrt a > 0,\,\,\,\forall a > 0,a \ne 1\\
\Rightarrow a - 1 > 0\\
\Rightarrow a > 1\\
c,\\
Q = - 2\\
\Leftrightarrow - \dfrac{{a - 1}}{{\sqrt a }} = - 2\\
\Leftrightarrow \dfrac{{a - 1}}{{\sqrt a }} = 2\\
\Leftrightarrow a - 1 = 2\sqrt a \\
\Leftrightarrow a - 2\sqrt a - 1 = 0\\
\Leftrightarrow \left( {a - 2\sqrt a + 1} \right) - 2 = 0\\
\Leftrightarrow {\left( {\sqrt a - 1} \right)^2} = 2\\
\Leftrightarrow \left[ \begin{array}{l}
\sqrt a - 1 = \sqrt 2 \\
\sqrt a - 1 = - \sqrt 2
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\sqrt a = \sqrt 2 + 1\\
\sqrt a = 1 - \sqrt 2
\end{array} \right.\\
\sqrt a > 0 \Rightarrow \sqrt a = \sqrt 2 + 1 \Rightarrow a = 3 + 2\sqrt 2 \\
d,\\
T = Q.\sqrt a = \left( { - \dfrac{{a - 1}}{{\sqrt a }}} \right).\sqrt a = - \left( {a - 1} \right) = 1 - a\\
a > 0,a \ne 1 \Rightarrow 1 - a < 1\\
\Rightarrow T < 1,\,\,\,\forall a > 0,a \ne 1
\end{array}\)