$\frac{x+2}{2008}$ + $\frac{x+3}{2007}$ + $\frac{x+4}{2006}$ + $\frac{x+2028}{6}$ = 0
⇔ ( $\frac{x+2}{2008}$ + 1 ) + ( $\frac{x+3}{2007}$ + 1 ) + ( $\frac{x+4}{2006}$ + 1 )+ ( $\frac{x+2028}{6}$ - 3 ) = 0
⇔ $\frac{x+2+ 2008}{2008}$ + $\frac{x+3+2007}{2007}$ + $\frac{x+4+2006}{2006}$ + $\frac{x+2028-18}{6}$ = 0
⇔ $\frac{x+2010}{2008}$ + $\frac{x+2010}{2007}$ + $\frac{x+2010}{2006}$ + $\frac{x+2010}{6}$ = 0
⇔ ( x + 2010 )( $\frac{1}{2008}$ + $\frac{1}{2007}$ + $\frac{1}{2006}$ + $\frac{1}{6}$ ) = 0
⇔ x + 2010 = 0 ( vì $\frac{1}{2008}$ + $\frac{1}{2007}$ + $\frac{1}{2006}$ + $\frac{1}{6}$ $\neq$ 0 )
⇔ x = -2010.