Đáp án:
\(\begin{array}{l}
1,\\
\left[ \begin{array}{l}
x = \dfrac{\pi }{6} + k2\pi \\
x = - \dfrac{\pi }{6} + k2\pi
\end{array} \right.\,\,\,\,\,\,\,\,\left( {k \in Z} \right)\\
2,\\
x = - \dfrac{\pi }{{18}} + \dfrac{{k\pi }}{3}\,\,\,\,\,\left( {k \in Z} \right)\\
3,\\
x = \dfrac{{5\pi }}{6} + k\pi \,\,\,\,\,\,\,\left( {k \in Z} \right)\\
4,\\
Phương\,\,trình\,\,vô\,\,nghiệm\\
5,\\
\left[ \begin{array}{l}
x = - \dfrac{\pi }{6} + k2\pi \\
x = \dfrac{{7\pi }}{6} + k2\pi
\end{array} \right.\,\,\,\,\,\,\left( {k \in Z} \right)\\
6,\\
\left[ \begin{array}{l}
x = k\pi \\
x = \arccos \dfrac{{ - 1}}{6} + k2\pi \\
x = - \arccos \dfrac{{ - 1}}{6} + k2\pi
\end{array} \right.\,\,\,\,\,\,\left( {k \in Z} \right)
\end{array}\)
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
1,\\
2\cos x - \sqrt 3 = 0\\
\Leftrightarrow 2\cos x = \sqrt 3 \\
\Leftrightarrow \cos x = \dfrac{{\sqrt 3 }}{2}\\
\Leftrightarrow \cos x = \cos \dfrac{\pi }{6}\\
\Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{\pi }{6} + k2\pi \\
x = - \dfrac{\pi }{6} + k2\pi
\end{array} \right.\,\,\,\,\,\,\,\,\left( {k \in Z} \right)\\
2,\\
DKXD:\,\,\,\cos \left( {3x + \dfrac{\pi }{2}} \right) \ne 0 \Leftrightarrow 3x + \dfrac{\pi }{2} \ne \dfrac{\pi }{2} + k\pi \Leftrightarrow 3x \ne k\pi \Leftrightarrow x \ne \dfrac{{k\pi }}{3}\\
\sqrt 3 \tan \left( {3x + \dfrac{\pi }{2}} \right) - 3 = 0\\
\Leftrightarrow \sqrt 3 \tan \left( {3x + \dfrac{\pi }{2}} \right) = 3\\
\Leftrightarrow \tan \left( {3x + \dfrac{\pi }{2}} \right) = \sqrt 3 \\
\Leftrightarrow \tan \left( {3x + \dfrac{\pi }{2}} \right) = \tan \dfrac{\pi }{3}\\
\Leftrightarrow 3x + \dfrac{\pi }{2} = \dfrac{\pi }{3} + k\pi \\
\Leftrightarrow 3x = \dfrac{\pi }{3} - \dfrac{\pi }{2} + k\pi \\
\Leftrightarrow 3x = - \dfrac{\pi }{6} + k\pi \\
\Leftrightarrow x = - \dfrac{\pi }{{18}} + \dfrac{{k\pi }}{3}\,\,\,\,\,\left( {k \in Z} \right)\\
3,\\
{\sin ^2}\left( {x - \dfrac{\pi }{3}} \right) + 2\cos \left( {x - \dfrac{\pi }{3}} \right) = 1\\
\Leftrightarrow \left( {1 - {{\cos }^2}\left( {x - \dfrac{\pi }{3}} \right)} \right) + 2\cos \left( {x - \dfrac{\pi }{3}} \right) = 1\\
\Leftrightarrow 1 - {\cos ^2}\left( {x - \dfrac{\pi }{3}} \right) + 2\cos \left( {x - \dfrac{\pi }{3}} \right) = 1\\
\Leftrightarrow - {\cos ^2}\left( {x - \dfrac{\pi }{3}} \right) + 2\cos \left( {x - \dfrac{\pi }{3}} \right) = 0\\
\Leftrightarrow - \cos \left( {x - \dfrac{\pi }{3}} \right).\left[ {\cos \left( {x - \dfrac{\pi }{3}} \right) - 2} \right] = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\cos \left( {x - \dfrac{\pi }{3}} \right) = 0\\
\cos \left( {x - \dfrac{\pi }{3}} \right) - 2 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\cos \left( {x - \dfrac{\pi }{3}} \right) = 0\\
\cos \left( {x - \dfrac{\pi }{3}} \right) = 2
\end{array} \right.\\
- 1 \le \cos \left( {x - \dfrac{\pi }{3}} \right) \le 1\\
\Rightarrow \cos \left( {x - \dfrac{\pi }{3}} \right) = 0\\
\Leftrightarrow x - \dfrac{\pi }{3} = \dfrac{\pi }{2} + k\pi \\
\Leftrightarrow x = \dfrac{\pi }{2} + \dfrac{\pi }{3} + k\pi \\
\Leftrightarrow x = \dfrac{{5\pi }}{6} + k\pi \,\,\,\,\,\,\,\left( {k \in Z} \right)\\
4,\\
\cos 2x + 2\sin x - 3 = 0\\
\Leftrightarrow \left( {1 - 2{{\sin }^2}x} \right) + 2\sin x - 3 = 0\\
\Leftrightarrow 1 - 2{\sin ^2}x + 2\sin x - 3 = 0\\
\Leftrightarrow - 2{\sin ^2}x + 2\sin x - 2 = 0\\
\Leftrightarrow {\sin ^2}x - \sin + 1 = 0\\
\Leftrightarrow \left( {{{\sin }^2}x - \sin x + \dfrac{1}{4}} \right) + \dfrac{3}{4} = 0\\
\Leftrightarrow \left( {{{\sin }^2}x - 2.\sin .\dfrac{1}{2} + {{\left( {\dfrac{1}{2}} \right)}^2}} \right) + \dfrac{3}{4} = 0\\
\Leftrightarrow {\left( {\sin x - \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} = 0\\
{\left( {\sin x - \dfrac{1}{2}} \right)^2} \ge 0,\,\,\,\forall \,x\\
\Rightarrow {\left( {\sin x - \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} \ge \dfrac{3}{4} > 0,\,\,\,\,\forall \,x\\
\Rightarrow Phương\,\,trình\,\,vô\,\,nghiệm\\
5,\\
6{\cos ^2}x + 5\sin x - 2 = 0\\
\Leftrightarrow 6.\left( {1 - {{\sin }^2}x} \right) + 5\sin x - 2 = 0\\
\Leftrightarrow 6 - 6{\sin ^2}x + 5\sin x - 2 = 0\\
\Leftrightarrow - 6{\sin ^2}x + 5\sin x + 4 = 0\\
\Leftrightarrow 6{\sin ^2}x - 5\sin x - 4 = 0\\
\Leftrightarrow \left( {6{{\sin }^2}x + 3\sin x} \right) + \left( { - 8\sin x - 4} \right) = 0\\
\Leftrightarrow 3\sin x.\left( {2\sin x + 1} \right) - 4.\left( {2\sin x + 1} \right) = 0\\
\Leftrightarrow \left( {2\sin x + 1} \right)\left( {3\sin x - 4} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
2\sin x + 1 = 0\\
3\sin x - 4 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\sin x = - \dfrac{1}{2}\\
\sin x = \dfrac{4}{3}
\end{array} \right.\\
- 1 \le \sin x \le 1 \Rightarrow \sin x = - \dfrac{1}{2}\\
\sin x = - \dfrac{1}{2}\\
\Leftrightarrow \sin x = \sin \left( { - \dfrac{\pi }{6}} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
x = - \dfrac{\pi }{6} + k2\pi \\
x = \pi - \left( {\dfrac{\pi }{6}} \right) + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = - \dfrac{\pi }{6} + k2\pi \\
x = \dfrac{{7\pi }}{6} + k2\pi
\end{array} \right.\,\,\,\,\,\,\left( {k \in Z} \right)\\
6,\\
\sin x + 3\sin 2x = 0\\
\Leftrightarrow \sin x + 3.\left( {2\sin x.\cos x} \right) = 0\\
\Leftrightarrow \sin x + 6\sin x.\cos x = 0\\
\Leftrightarrow \sin x\left( {1 + 6\cos x} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sin x = 0\\
1 + 6\cos x = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\sin x = 0\\
\cos x = - \dfrac{1}{6}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = k\pi \\
x = \arccos \dfrac{{ - 1}}{6} + k2\pi \\
x = - \arccos \dfrac{{ - 1}}{6} + k2\pi
\end{array} \right.\,\,\,\,\,\,\left( {k \in Z} \right)
\end{array}\)