\(y = \frac{{\sqrt {x + 1} - 2}}{{{x^2} - 3x}} = \frac{{\left( {\sqrt {x + 1} - 2} \right)\left( {\sqrt {x + 1} + 2} \right)}}{{x\left( {x - 3} \right)\left( {\sqrt {x + 1} + 2} \right)}} = \frac{{x - 3}}{{x\left( {x - 3} \right)\left( {\sqrt {x + 1} + 2} \right)}} = \frac{1}{{x\left( {\sqrt {x + 1} + 2} \right)}}\)
\(\mathop {\lim }\limits_{x \to \infty } y = 0\) nên TCN \(y = 0\)
\(\mathop {\lim }\limits_{x \to 0} y = \infty \) nên TCĐ \(x = 0\)
Vậy có 2 tiệm cận.