Đáp án:
Giải thích các bước giải:
$a)\quad \sin x - \cos x = \dfrac{\sqrt6}{2}$
$\Leftrightarrow \sqrt2\sin\left(x -\dfrac{\pi}{4}\right)= \dfrac{\sqrt6}{2}$
$\Leftrightarrow \sin\left(x -\dfrac{\pi}{4}\right)= \dfrac{\sqrt3}{2}$
$\Leftrightarrow \sin\left(x -\dfrac{\pi}{4}\right)= \sin\dfrac{\pi}{3}$
$\Leftrightarrow \left[\begin{array}{l}x - \dfrac{\pi}{4}=\dfrac{\pi}{3} + k2\pi\\x -\dfrac{\pi}{4} = \dfrac{2\pi}{3} + k2\pi\end{array}\right.$
$\Leftrightarrow \left[\begin{array}{l}x =\dfrac{7\pi}{12} + k2\pi\\x= \dfrac{11\pi}{12} + k2\pi\end{array}\right.\quad (k\in\Bbb Z)$
$c)\quad \sin4x +\cos4x = \sqrt3$
$\Leftrightarrow \sqrt2\sin\left(4x + \dfrac{\pi}{4}\right)= \sqrt3$
$\Leftrightarrow \sin\left(4x + \dfrac{\pi}{4}\right)=\dfrac{\sqrt6}{2}$ (vô nghiệm)
Vậy phương trình đã cho vô nghiệm
$e)\quad 3\sin x + \sqrt3\cos x= 1$
$\Leftrightarrow \dfrac{\sqrt3}{2}\sin x + \dfrac12\cos x = \dfrac{\sqrt3}{6}$
$\Leftrightarrow \sin\left(x + \dfrac{\pi}{6}\right)= \dfrac{\sqrt3}{6}$
$\Leftrightarrow \left[\begin{array}{l}x + \dfrac{\pi}{6}=\arcsin\dfrac{\sqrt3}{6} + k2\pi\\x +\dfrac{\pi}{6} = \pi -\arcsin\dfrac{\sqrt3}{6} + k2\pi\end{array}\right.$
$\Leftrightarrow \left[\begin{array}{l}x = - \dfrac{\pi}{6}+\arcsin\dfrac{\sqrt3}{6} + k2\pi\\x = \dfrac{5\pi}{6} -\arcsin\dfrac{\sqrt3}{6} + k2\pi\end{array}\right.\quad (k\in\Bbb Z)$