Đáp án:
\(\begin{array}{l}
1,\\
a,\,\,\,\,x \ge \dfrac{2}{9}\\
b,\,\,\,\,x > - \dfrac{3}{2}\\
c,\,\,\,\,\,\,\forall x\\
d,\,\,\,\,\,\forall x\\
2,\\
a,\,\,\,\,\,6\\
b,\,\,\,\,\,2\sqrt 2 - 4\\
c,\,\,\,\,\,\sqrt 6 \\
d,\,\,\,\,\,2 - 2\sqrt 2
\end{array}\)
Giải thích các bước giải:
Bài 1:
Điều kiện xác định của các căn thức đã cho là:
\(\begin{array}{l}
a,\\
9x - 2 \ge 0 \Leftrightarrow 9x \ge 2 \Leftrightarrow x \ge \dfrac{2}{9}\\
b,\\
\left\{ \begin{array}{l}
\dfrac{4}{{2x + 3}} \ge 0\\
2x + 3 \ne 0
\end{array} \right. \Leftrightarrow 2x + 3 > 0 \Leftrightarrow 2x > - 3 \Leftrightarrow x > - \dfrac{3}{2}\\
c,\\
4{x^2} - 4x + 1 \ge 0\\
\Leftrightarrow {\left( {2x} \right)^2} - 2.2x.1 + {1^2} \ge 0\\
\Leftrightarrow {\left( {2x - 1} \right)^2} \ge 0,\,\,\,\,\forall x\\
d,\\
4{x^2} + 3 \ge 0 \Leftrightarrow 4{x^2} \ge - 3 \Leftrightarrow {x^2} \ge - \dfrac{3}{4},\,\,\,\,\forall x\\
2,\\
a,\\
\sqrt {{{\left( {3 - 2\sqrt 2 } \right)}^2}} + \sqrt {{{\left( {3 + 2\sqrt 2 } \right)}^2}} \\
= \left| {3 - 2\sqrt 2 } \right| + \left| {3 + 2\sqrt 2 } \right|\\
= \left( {3 - 2\sqrt 2 } \right) + \left( {3 + 2\sqrt 2 } \right)\\
= 6\\
b,\\
\sqrt {{{\left( {\sqrt 2 + 1} \right)}^2}} - \sqrt {{{\left( {\sqrt 2 - 5} \right)}^2}} \\
= \left| {\sqrt 2 + 1} \right| - \left| {\sqrt 2 - 5} \right|\\
= \left( {\sqrt 2 + 1} \right) - \left( {5 - \sqrt 2 } \right)\\
= \sqrt 2 + 1 - 5 + \sqrt 2 \\
= 2\sqrt 2 - 4\\
c,\\
\sqrt {15 - 6\sqrt 6 } + \sqrt {33 - 12\sqrt 6 } \\
= \sqrt {9 - 6\sqrt 6 + 6} + \sqrt {24 - 12\sqrt 6 + 9} \\
= \sqrt {{3^2} - 2.3.\sqrt 6 + {{\sqrt 6 }^2}} + \sqrt {{{\left( {2\sqrt 6 } \right)}^2} - 2.2\sqrt 6 .3 + {3^2}} \\
= \sqrt {{{\left( {3 - \sqrt 6 } \right)}^2}} + \sqrt {{{\left( {2\sqrt 6 - 3} \right)}^2}} \\
= \left| {3 - \sqrt 6 } \right| + \left| {2\sqrt 6 - 3} \right|\\
= \left( {3 - \sqrt 6 } \right) + \left( {2\sqrt 6 - 3} \right)\\
= \sqrt 6 \\
d,\\
\sqrt {11 - 6\sqrt 2 } - \sqrt {3 + 2\sqrt 2 } \\
= \sqrt {9 - 6\sqrt 2 + 2} - \sqrt {2 + 2\sqrt 2 + 1} \\
= \sqrt {{3^2} - 2.3.\sqrt 2 + {{\sqrt 2 }^2}} - \sqrt {{{\sqrt 2 }^2} + 2.\sqrt 2 .1 + {1^2}} \\
= \sqrt {{{\left( {3 - \sqrt 2 } \right)}^2}} - \sqrt {{{\left( {\sqrt 2 + 1} \right)}^2}} \\
= \left| {3 - \sqrt 2 } \right| - \left| {\sqrt 2 + 1} \right|\\
= \left( {3 - \sqrt 2 } \right) - \left( {\sqrt 2 + 1} \right)\\
= 3 - \sqrt 2 - \sqrt 2 - 1\\
= 2 - 2\sqrt 2
\end{array}\)