Đáp án:
\(\begin{array}{l}
1,\\
a,\\
x = 49\\
b,\\
x = 4\\
c,\\
x = 16\\
d,\\
x = 4\\
e,\\
x = 4\\
f,\\
Phuơng\,\,trình\,\,vô\,\,nghiệm\\
2,\\
a,\\
2 < \sqrt 5 \\
b,\\
2 < \sqrt 5 \\
c,\\
3 > \sqrt 3 + 1\\
d,\\
1 > \sqrt 2 - 1\\
e,\\
3\sqrt {31} > 15\\
f,\\
- 2\sqrt {11} > - 12\\
3,\\
a,\\
x > 16\\
b,\\
0 \le x < 9\\
c,\\
x \ge \dfrac{9}{2}\\
d,\\
x \le 8\\
e,\\
Bất\,\,phương\,\,trình\,\,vô\,\,nghiệm\\
f,\\
x = 0\\
4,\\
a,\\
\sqrt {{1^3} + {2^3}} = 1 + 2\\
b,\\
\sqrt {{1^3} + {2^3} + {3^3}} = 1 + 2 + 3\\
c,\\
\sqrt {{1^3} + {2^3} + {3^3} + {4^3}} = 1 + 2 + 3 + 4\\
5,\\
a,\\
a > 1 \Leftrightarrow a > \sqrt a \\
b,\\
a < 1 \Leftrightarrow a < \sqrt a
\end{array}\)
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
1,\\
a,\\
\sqrt x = 7\\
\Leftrightarrow x = {7^2}\\
\Leftrightarrow x = 49\\
b,\\
3\sqrt x = 6\\
\Leftrightarrow \sqrt x = 2\\
\Leftrightarrow x = {2^2}\\
\Leftrightarrow x = 4\\
c,\\
\sqrt {4x} = 8\\
\Leftrightarrow 4x = {8^2}\\
\Leftrightarrow 4x = 64\\
\Leftrightarrow x = 16\\
d,\\
\sqrt {{x^2}} = 4\\
\Leftrightarrow \left| x \right| = 4\\
\Leftrightarrow \left[ \begin{array}{l}
x = 4\\
x = - 4
\end{array} \right.\\
x \ge 0 \Rightarrow x = 4\\
e,\\
\sqrt {2x} = \sqrt 8 \\
\Leftrightarrow 2x = {\sqrt 8 ^2}\\
\Leftrightarrow 2x = 8\\
\Leftrightarrow x = 4\\
f,\\
\sqrt x = - 3\\
\sqrt x \ge 0,\,\,\,\forall \,x \ge 0\\
\Rightarrow Phương\,\,trình\,\,vô\,\,nghiệm\\
2,\\
a,\\
2 = \sqrt {{2^2}} = \sqrt 4 < \sqrt 5 \\
\Rightarrow 2 < \sqrt 5 \\
b,\\
2 = \sqrt {{2^2}} = \sqrt 4 < \sqrt 5 \\
\Rightarrow 2 < \sqrt 5 \\
c,\\
3 = 2 + 1 = \sqrt {{2^2}} + 1 = \sqrt 4 + 1 > \sqrt 3 + 1\\
\Rightarrow 3 > \sqrt 3 + 1\\
d,\\
1 = 2 - 1 = \sqrt {{2^2}} - 1 = \sqrt 4 - 1 > \sqrt 2 - 1\\
\Rightarrow 1 > \sqrt 2 - 1\\
e,\\
3\sqrt {31} > 3\sqrt {25} = 3\sqrt {{5^2}} = 3.5 = 15\\
f,\\
2\sqrt {11} < 2\sqrt {36} = 2\sqrt {{6^2}} = 2.6 = 12\\
\Rightarrow 2\sqrt {11} < 12\\
\Rightarrow - 2\sqrt {11} > - 12\\
3,\\
a,\\
\sqrt x > 4\\
\Leftrightarrow x > {4^2}\\
\Leftrightarrow x > 16\\
b,\\
2\sqrt x < 6\\
\Leftrightarrow \sqrt x < 3\\
\Leftrightarrow x < {3^2}\\
\Leftrightarrow x < 9\\
\Rightarrow 0 \le x < 9\\
c,\\
\sqrt {2x} \ge 3\\
\Leftrightarrow 2x \ge {3^2}\\
\Leftrightarrow 2x \ge 9\\
\Leftrightarrow x \ge \dfrac{9}{2}\\
d,\\
\sqrt {2x} \le 4\\
\Leftrightarrow 2x \le {4^2}\\
\Leftrightarrow 2x \le 16\\
\Leftrightarrow x \le 8\\
e,\\
x = 0 \Rightarrow \sqrt { - 2x} = 0 < 4\,\,\,\,\left( L \right)\\
x > 0 \Rightarrow - 2x < 0 \Rightarrow \sqrt { - 2x} \,\,vô\,\,nghĩa\\
\Rightarrow Bất\,\,phương\,\,trình\,\,vô\,\,nghiệm\\
f,\\
x = 0 \Rightarrow \sqrt { - 3x} = 0 < 6\,\,\,\left( {t/m} \right)\\
x > 0 \Rightarrow - 3x < 0 \Rightarrow \sqrt { - 3x} \,\,vô\,\,nghĩa\\
\Rightarrow x = 0\\
4,\\
a,\\
\sqrt {{1^3} + {2^3}} = \sqrt {1 + 8} = \sqrt 9 = 3 = 1 + 2\\
b,\\
\sqrt {{1^3} + {2^3} + {3^3}} = \sqrt {1 + 8 + 27} = \sqrt {36} = 6 = 1 + 2 + 3\\
c,\\
\sqrt {{1^3} + {2^3} + {3^3} + {4^3}} = \sqrt {1 + 4 + 27 + 64} = \sqrt {100} = 10 = 1 + 2 + 3 + 4\\
5,\\
a - \sqrt a = {\sqrt a ^2} - \sqrt a = \sqrt a .\left( {\sqrt a - 1} \right)\\
a,\\
a > 1 \Leftrightarrow \sqrt a > 1 \Leftrightarrow \sqrt a - 1 > 0\\
\Rightarrow \sqrt a .\left( {\sqrt a - 1} \right) > 0 \Leftrightarrow a - \sqrt a > 0 \Leftrightarrow a > \sqrt a \\
b,\\
a < 1 \Leftrightarrow \sqrt a < 1 \Leftrightarrow \sqrt a - 1 < 0\\
\Rightarrow \sqrt a .\left( {\sqrt a - 1} \right) < 0 \Leftrightarrow a - \sqrt a < 0 \Leftrightarrow a < \sqrt a
\end{array}\)