Giải thích các bước giải:
$lim\frac{1+2^{3n}+3^{2n}}{5+2^{3n+1}+3^{2n+2}}=lim\frac{1+8^n+9^n}{5+8^{n}.2+9^{n}.3^2}=lim\frac{9^n(\frac{1}{9^n}+(\frac{8}{9})^n+1)}{9^n(\frac{5}{9^n}+2.(\frac{8}{9})^n+3^2)}=lim\frac{(\frac{1}{9^n}+(\frac{8}{9})^n+1)}{(\frac{5}{9^n}+2.(\frac{8}{9})^n+3^2)}=\frac{0+0+1}{0+0+9}=\frac{1}{9}$