Đáp án:
$\sin^2\alpha+\sin^2\left(\alpha-\dfrac{\pi}{3}\right)-\sin\alpha\sin\left(\alpha-\dfrac{\pi}{3}\right)=\dfrac{3}{4}$
Giải thích các bước giải:
$\sin^2\alpha+\sin^2\left(\alpha-\dfrac{\pi}{3}\right)-\sin\alpha\sin\left(\alpha-\dfrac{\pi}{3}\right)$
$=\left[\sin^2\alpha-2\sin\alpha\sin\left(\alpha-\dfrac{\pi}{3}\right)+\sin^2\left(\alpha-\dfrac{\pi}{3}\right)\right]+\sin\alpha\sin\left(\alpha-\dfrac{\pi}{3}\right)$
$=\left[\sin\alpha-\sin\left(\alpha-\dfrac{\pi}{3}\right)\right]^2+\sin\alpha\sin\left(\alpha-\dfrac{\pi}{3}\right)$
$=\left[2\cos\left(\alpha-\dfrac{\pi}{6}\right).\sin\dfrac{\pi}{6}\right]^2+\dfrac{1}{2}.\left[\cos\dfrac{\pi}{3}-\cos\left(2\alpha-\dfrac{\pi}{3}\right)\right]$
$=\left[2\cos\left(\alpha-\dfrac{\pi}{6}\right).\dfrac{1}{2}\right]^2+\dfrac{1}{2}.\dfrac{1}{2}-\dfrac{1}{2}.\cos\left(2\alpha-\dfrac{\pi}{3}\right)$
$=\cos^2\left(\alpha-\dfrac{\pi}{6}\right)+\dfrac{1}{4}-\dfrac{1}{2}.\left[2\cos^2\left(\alpha-\dfrac{\pi}{6}\right)-1\right]$
$=\cos^2\left(\alpha-\dfrac{\pi}{6}\right)+\dfrac{1}{4}-\cos^2\left(\alpha-\dfrac{\pi}{6}\right)+\dfrac{1}{2}$
$=\dfrac{1}{4}+\dfrac{1}{2}=\dfrac{3}{4}$.