Đáp án:
\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = 2\)
Giải thích các bước giải:
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} {x^2} + 1\\
= \mathop {\lim }\limits_{x \to {1^ + }} \left( {1 + 1} \right) = 2\\
\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} 2x\\
= \mathop {\lim }\limits_{x \to {1^ - }} 2.1 = 2
\end{array}\)