Đáp án:
\(\begin{array}{l}
B5:\\
N = \dfrac{3}{{\sqrt x - 2}}\\
B6:\\
P = \dfrac{{5\left( {\sqrt x - 3} \right)}}{{x - 10\sqrt x - 59}}
\end{array}\)
Giải thích các bước giải:
\(\begin{array}{l}
B5:\\
DK:x \ge 0;x \ne \left\{ {4;9} \right\}\\
N = \left[ {\dfrac{{\sqrt x \left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} - 1} \right]:\dfrac{{9 - x + \left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right) - {{\left( {\sqrt x - 2} \right)}^2}}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{\sqrt x - \sqrt x - 3}}{{\sqrt x + 3}}.\dfrac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 3} \right)}}{{9 - x + x - 9 - {{\left( {\sqrt x - 2} \right)}^2}}}\\
= \dfrac{{ - 3}}{{\sqrt x + 3}}.\dfrac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 3} \right)}}{{ - {{\left( {\sqrt x - 2} \right)}^2}}}\\
= \dfrac{3}{{\sqrt x + 3}}.\dfrac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 3} \right)}}{{{{\left( {\sqrt x - 2} \right)}^2}}}\\
= \dfrac{3}{{\sqrt x - 2}}\\
B6:\\
DK:x \ge 0;x \ne \left\{ {9;25} \right\}\\
P = \left[ {\dfrac{{\sqrt x \left( {\sqrt x - 5} \right)}}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}} - 1} \right]:\dfrac{{25 - x - \left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right) + {{\left( {\sqrt x + 5} \right)}^2}}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{\sqrt x - \sqrt x - 5}}{{\sqrt x + 5}}.\dfrac{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}}{{25 - x - x + 9 + x + 10\sqrt x + 25}}\\
= - \dfrac{5}{{\sqrt x + 5}}.\dfrac{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}}{{ - x + 10\sqrt x + 59}}\\
= - \dfrac{{5\left( {\sqrt x - 3} \right)}}{{ - x + 10\sqrt x + 59}}\\
= \dfrac{{5\left( {\sqrt x - 3} \right)}}{{x - 10\sqrt x - 59}}
\end{array}\)