Đáp án:
Giải thích các bước giải:
$\text{a,3x²-5x+2=0}$
$\text{⇔3x²-3x-2x+2=0}$
$\text{⇔3x(x-1)-2(x-1)=0}$
$\text{⇔(3x-2)(x-1)=0}$
$\text{⇔\(\left[ \begin{array}{l}3x-2=0\\x-1=0\end{array} \right.\) }$
$\text{⇔\(\left[ \begin{array}{l}x=2/3\\x=1\end{array} \right.\) }$
$\text{Vậy S={2/3; 1}}$
$\text{b,(2x-3)²=x²-10x+25}$
$\text{⇔4x²-12x+9=x²-10x+25}$
$\text{⇔4x²-12x+9-x²+10x-25=0}$
$\text{⇔3x²+6x-8x-16=0}$
$\text{⇔3x(x+2)-8(x+2)=0}$
$\text{⇔(3x-8)(x+2)=0}$
$\text{⇔\(\left[ \begin{array}{l}3x-8=0\\x+2=0\end{array} \right.\) }$
$\text{⇔\(\left[ \begin{array}{l}x=8/3\\x=-2\end{array} \right.\) }$
$\text{Vậy S= { 8/3 ; -2 }}$
$\text{c, x³-9x²=0}$
$\text{⇔x²(x-9)=0}$
$\text{⇔\(\left[ \begin{array}{l}x²=0\\x-9=0\end{array} \right.\) }$
$\text{⇔\(\left[ \begin{array}{l}x=0\\x=9\end{array} \right.\) }$
$\text{Vậy S={0; 9} }$
$\text{d, x³+4x²+4x=0}$
$\text{⇔x³+2x²+2x²+4x=0}$
$\text{⇔x²(x+2)+2x(x+2)=0}$
$\text{⇔(x²+2x)(x+2)=0}$
$\text{⇔x(x+2)(x+2)=0}$
$\text{⇔\(\left[ \begin{array}{l}x=0\\x+2=0\end{array} \right.\) }$
$\text{⇔\(\left[ \begin{array}{l}x=0\\x=-2\end{array} \right.\) }$
$\text{Vậy S= {0; -2}}$