Đặt \(-x=u\). Hệ phương trình đã cho chuyển thành :
\(\begin{cases}u^2+y^2+u+y=2\\-yu-\left(u+y\right)=-1\end{cases}\)\(\Leftrightarrow\begin{cases}u^2+y^2+u+y=2\\uy+\left(u+y\right)=1\end{cases}\) (*)
Đặt \(u+y=S;uy+P\) , điều kiện \(S^2\ge4P\). Thay vào (*), ta được :
\(\begin{cases}S^2-2P+S=2\\S+P=1\end{cases}\) \(\Leftrightarrow\begin{cases}P=1-S\\S^2+3S-4=0\end{cases}\)
\(\Leftrightarrow\begin{cases}S=1\\P=0\end{cases}\) hoặc \(\begin{cases}S=-4\\P=5\end{cases}\) (loại)
Vậy \(\begin{cases}u+y=1\\uy=0\end{cases}\) \(\Leftrightarrow u+y=1\) và \(\left[\begin{array}{nghiempt}y=0\\u=0\end{array}\right.\)
\(\Leftrightarrow\begin{cases}y=0\\u=1\end{cases}\) hoặc \(\begin{cases}u=0\\y=1\end{cases}\)
\(\Leftrightarrow\begin{cases}y=0\\x=-1\end{cases}\) hoặc \(\begin{cases}x=0\\y=1\end{cases}\)
Hệ có 2 nghiệm là \(\begin{cases}y=0\\x=-1\end{cases}\) và \(\begin{cases}x=0\\y=1\end{cases}\)