Giải hệ phương trình \(\left\{ \begin{array}{l}{x^2} - {y^2} - 6 = 0\\{\left( {x + y - 1} \right)^2} - {\left( {\frac{2}{{x - y}}} \right)^2} - 3 = 0\end{array} \right.{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (I)\)
A.\(\left( {x;y} \right) = \left\{ {\left( {\frac{{ - 35}}{4};\frac{{29}}{4}} \right);\,\,\,\left( {\frac{5}{2};\frac{1}{2}} \right)} \right\}.\)
B.\(\left( {x;y} \right) = \left\{ {\left( {\frac{{ - 35}}{8};\frac{{29}}{8}} \right);\,\,\,\left( {\frac{5}{4};\frac{1}{4}} \right)} \right\}.\)
C.\(\left( {x;y} \right) = \left\{ {\left( {\frac{{ - 35}}{4};\frac{{29}}{4}} \right);\,\,\,\left( {\frac{5}{4};\frac{1}{4}} \right)} \right\}.\)
D.\(\left( {x;y} \right) = \left\{ {\left( {\frac{{ - 35}}{8};\frac{{29}}{8}} \right);\,\,\,\left( {\frac{5}{2};\frac{1}{2}} \right)} \right\}.\)

Các câu hỏi liên quan