$\left \{ {{x+y+xy+1=0} \atop {x^2+y^2-x-y=22}} \right.$
⇔$\left \{ {{xy+1=-x-y} \atop {x^2+y^2+xy+1=22}} \right.$
⇔$\left \{ {{xy+1=-x-y} \atop {x^2+y^2+xy+1=22}} \right.$
⇔$\left \{ {{xy+1=-x-y} \atop {(x+y)^2-xy=21}} \right.$
Đặt $\left \{ {{S=x+y} \atop {P=xy}} \right.$ $(S^2≥4P)$
⇒$\left \{ {{S+P=-1} \atop {S^2-P-21=0}} \right.$
⇔$\left \{ {{P=-1-S} \atop {S^2+1+S-21=0}} \right.$
⇔$\left \{ {{P=-1-S} \atop {S^2+S-20=0}} \right.$
⇔$\left \{ {{S=4} \atop {P=-5}} \right.(n)$ hay $\left \{ {{S=-5} \atop {P=4}} \right.(n)$
TH1 : ⇒$\left \{ {{x+y=4} \atop {xy=-5}} \right.$
⇔$\left \{ {{x=4-y} \atop {y(4-y)=-5}} \right.$
⇔$\left \{ {{x=4-y} \atop {-y^2+4y+5=0}} \right.$
⇔$\left \{ {{x=5} \atop {y=-1}} \right.$ hay $\left \{ {{x=-1} \atop {y=5}}\right.$
TH2 : ⇒$\left \{ {{x+y=-5} \atop {xy=4}} \right.$
⇔$\left \{ {{x=-5-y} \atop {y(-5-y)=4}} \right.$
⇔$\left \{ {{x=-5-y} \atop {-y^2-5y-4=0}} \right.$
⇔$\left \{ {{x=-1} \atop {y=-4}} \right.$ hay $\left \{ {{x=-4} \atop {y=-1}}\right.$