Đáp án:
n/ $4\sqrt{7}$
o/ $11\sqrt{6}$
Giải thích các bước giải:
n/ $\dfrac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-2\sqrt{2}$
$=\dfrac{\sqrt{8}-\sqrt{7}}{(\sqrt{8}+\sqrt{7})(\sqrt{8}-\sqrt{7})}+5\sqrt{7}-2\sqrt{2}$
$=\dfrac{\sqrt{8}-\sqrt{7}}{8-7}+5\sqrt{7}-\sqrt{8}$
$=\sqrt{8}-\sqrt{7}+5\sqrt{7}-\sqrt{8}$
$=4\sqrt{7}$
o/ $\sqrt{150}+\sqrt{1,6}.\sqrt{60}+4,5\sqrt{2\dfrac{2}{3}}-\sqrt{6}$
$=\sqrt{25.6}+\sqrt{96}+\sqrt{\dfrac{81}{4}.\dfrac{8}{3}}-\sqrt{6}$
$=5\sqrt{6}+4\sqrt{6}+\sqrt{54}-\sqrt{6}$
$=8\sqrt{6}+3\sqrt{6}$
$=11\sqrt{6}$