Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
3,\\
a,\\
A = \left( {\dfrac{{2x + 1}}{{x\sqrt x - 1}} - \dfrac{1}{{\sqrt x - 1}}} \right):\left( {1 - \dfrac{{x - 2}}{{x + \sqrt x + 1}}} \right)\,\,\,\,\,\,\,\,\left( \begin{array}{l}
x \ge 0\\
x \ne 1
\end{array} \right)\\
= \left( {\dfrac{{2x + 1}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}} - \dfrac{1}{{\sqrt x - 1}}} \right):\dfrac{{\left( {x + \sqrt x + 1} \right) - \left( {x - 2} \right)}}{{x + \sqrt x + 1}}\\
= \dfrac{{2x + 1 - \left( {x + \sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}:\dfrac{{\sqrt x + 3}}{{x + \sqrt x + 1}}\\
= \dfrac{{x - \sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}.\dfrac{{x + \sqrt x + 1}}{{\sqrt x + 3}}\\
= \dfrac{{\sqrt x .\left( {\sqrt x - 1} \right)}}{{\sqrt x - 1}}.\dfrac{1}{{\sqrt x + 3}}\\
= \dfrac{{\sqrt x }}{{\sqrt x + 3}}\\
b,\\
x = \dfrac{{2 - \sqrt 3 }}{2} = \dfrac{{4 - 2\sqrt 3 }}{4} = \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{4}\\
\Rightarrow \sqrt x = \dfrac{{\sqrt 3 - 1}}{2}\\
\Rightarrow A = \dfrac{{\dfrac{{\sqrt 3 - 1}}{2}}}{{\dfrac{{\sqrt 3 - 1}}{2} + 3}} = \dfrac{{\dfrac{{\sqrt 3 - 1}}{2}}}{{\dfrac{{\sqrt 3 + 5}}{2}}} = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 5}} = \dfrac{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 - 5} \right)}}{{\left( {\sqrt 3 + 5} \right)\left( {\sqrt 3 - 5} \right)}}\\
= \dfrac{{3 - 5\sqrt 3 - \sqrt 3 + 5}}{{3 - 25}} = \dfrac{{8 - 6\sqrt 3 }}{{ - 22}} = \dfrac{{3\sqrt 3 - 4}}{{11}}\\
c,\\
A = \dfrac{1}{3} \Leftrightarrow \dfrac{{\sqrt x }}{{\sqrt x + 3}} = \dfrac{1}{3}\\
\Leftrightarrow 3.\sqrt x = \sqrt x + 3\\
\Leftrightarrow 2\sqrt x = 3\\
\Leftrightarrow \sqrt x = \dfrac{3}{2}\\
\Leftrightarrow x = \dfrac{9}{4}\\
4,\\
DKXD:\,\,\,\left\{ \begin{array}{l}
x \ge 0\\
x \ne 4
\end{array} \right.\\
a,\\
x = 4 - 2\sqrt 3 = {\left( {\sqrt 3 - 1} \right)^2} \Rightarrow \sqrt x = \sqrt 3 - 1\\
\Rightarrow A = \dfrac{{\left( {\sqrt 3 - 1} \right) + 2}}{{\left( {\sqrt 3 - 1} \right) + 1}} = \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 }} = \dfrac{{3 + \sqrt 3 }}{3}\\
b,\\
B = \dfrac{{x + 12}}{{x - 4}} + \dfrac{1}{{\sqrt x + 2}} - \dfrac{4}{{\sqrt x - 2}}\\
= \dfrac{{x + 12}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}} + \dfrac{1}{{\sqrt x + 2}} - \dfrac{4}{{\sqrt x - 2}}\\
= \dfrac{{x + 12 + \left( {\sqrt x - 2} \right) - 4.\left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\\
= \dfrac{{x + 12 + \sqrt x - 2 - 4\sqrt x - 8}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\\
= \dfrac{{x - 3\sqrt x + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\\
= \dfrac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\\
= \dfrac{{\sqrt x - 1}}{{\sqrt x + 2}}\\
c,\\
A.B = \dfrac{{\sqrt x + 2}}{{\sqrt x + 1}}.\dfrac{{\sqrt x - 1}}{{\sqrt x + 2}} = \dfrac{{\sqrt x - 1}}{{\sqrt x + 1}}\\
A.B - 2 = \dfrac{{\sqrt x - 1}}{{\sqrt x + 1}} - 2 = \dfrac{{\sqrt x - 1 - 2.\left( {\sqrt x + 1} \right)}}{{\sqrt x + 1}} = \dfrac{{ - \sqrt x - 3}}{{\sqrt x + 1}} = - \dfrac{{\sqrt x + 3}}{{\sqrt x + 1}} < 0,\,\,\,\forall x \ge 0,x \ne 4\\
\Rightarrow A.B < 2
\end{array}\)